Evaluating Slow Release N Fertilizer and an Organic Fish/blood Meal Product for Wetland Taro Production

Jonathan Deenik, Greg Bruland, Roy Yamakawa University of Hawaii at Manoa Cooperative Research and Extension, Kaua`i County Kauai Taro Growers Association

Objective and Experimental Layout

• Evaluate the effect of slow release N fertilizer and organic fish/blood meal fertilizer on taro yield, nitrogen use efficiency (NUE), and economic feasibility.

Fertilizer Effects on Taro Yield

- No statistically significant effect
- CR fertilizer produced consistent yield

Heavy phytophora incidence

Unusually high rainfall (175")

Month

Soil NH_4^+-N

- NH₄⁺-N in the ON and farmer practice plots similar. O N plots were not low in NH₄⁺-N
- Monthly additions of urea did not change soil NH₄⁺-N
- For FBM and CR fertilizers, NH₄⁺-N rose rapidly to a maximum at all sites within the 1st 60 days indicating a rapid release fertilizer.
- FBM and CR fertilizers conserve N in the root zone

Leaf N Concentration at 4 Months

 Higher soil NH₄⁺-N in FBM and SRN plots at 4 months produced significantly higher taro leaf N status compared with ON and FP

Fertilizer Effect on Water N

Days After Planting

 Urea practice showed increase related to fertilizer event mostly at Farm 4

• Urea treatment showed higher tendency for N export from the taro field.

otal N (mg L^{-1})

[•] FBM and CR fertilizers showed effect on water N up to 30 days

Results of partial cost benefit analysis

Treatment	Farm	Yield	Gross	Net	Mean Net
			Return	Return ^a	Return
		lb/acre	\$/acre	\$/acre	\$/acre
Farmer Practice	1	16,607	\$11,127	\$10,626	\$14,320(±\$3,333)
	3	23,482	\$15,733	\$15,232	
	4	26,272	\$17,602	\$17,102	
FBM	1	22,461	\$15,049	\$13,249	\$11,571(±\$6,583)
	3	28,287	\$18,952	\$17,152	
	4	9,120	\$6,110	\$4,310	
CR	1	25,864	\$17,329	\$16,579	\$15,925(±\$567)
	3	24,434	\$16,371	\$15,621	
	4	24,366	\$16,325	\$15,575	

 Despite higher initial cost (68¢/lb for CR vs 48¢/lb for urea), CR produced more consistent return to the farmer.

Summary

- Potential benefits of Controlled Release Fertilizer
 - Control release fertilizer produced consistent yield with potential be economical to farmers
 - Conserves N in the root zone
 - Decreases export of N to river system
- Next Steps
 - should consider using lower rates of controlled release and fish/bone meal fertilizer
 - Repeat fish/bone meal experiment

Mahalo Nui!

Research supported by USDA-NRI grant (2008-35107-04526 & USDA HATCH funds